
# Präsentation zum Lehrgang Maschinisten

Teil 2

## 4. Feuerlöschkreiselpumpen: Kavitation

#### **Entstehung der Kavitation:**

Wenn eine Feuerlöschkreiselpumpe mehr Wasser fördern soll als überhaupt zufließen kann, dann entsteht vor dem Laufrad im Pumpengehäuse ein übermäßig hoher Unterdruck (Hohlsog). Hierbei kommt es zur Dampfblasenbildung. Bei deren Implosion entstehen sehr hohe Drücke und Temperaturen. Dies führt zu Schäden an Laufrädern und Leitapparaten.









## 4. Feuerlöschkreiselpumpen

#### **Erkennung der Kavitation:**

- Auftreten unüblicher Pumpengeräusche
- Unterdruck steigt stark an
- Ausgangsdruck sinkt stark ab
- Starke Abweichung zwischen manometrischer und geodätischer Saughöhe

## Maßnahmen zur Vermeidung von Kavitation:

- Saughöhen über 7,5 m vermeiden
- Nicht mit freiem Auslauf arbeiten
- Drehzahl der Feuerlöschkreiselpumpe und Fördermenge reduzieren
- Verschmutzung im Saugbereich beseitigen



# 4. Feuerlöschkreiselpumpen

#### Wassererwärmung in der Feuerlöschkreiselpumpe,

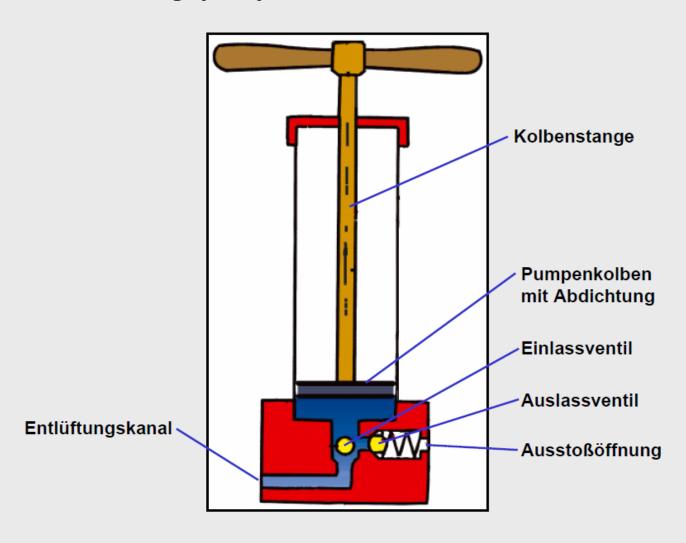
#### Verbrühungsgefahr!

#### **Entstehung:**

Feuerlöschkreiselpumpe in Betrieb, aber keine Wasserabgabe.

#### Gegenmaßnahmen:

Für ausreichende Wasserabgabe sorgen, ggf. Tankkreislauf durchführen

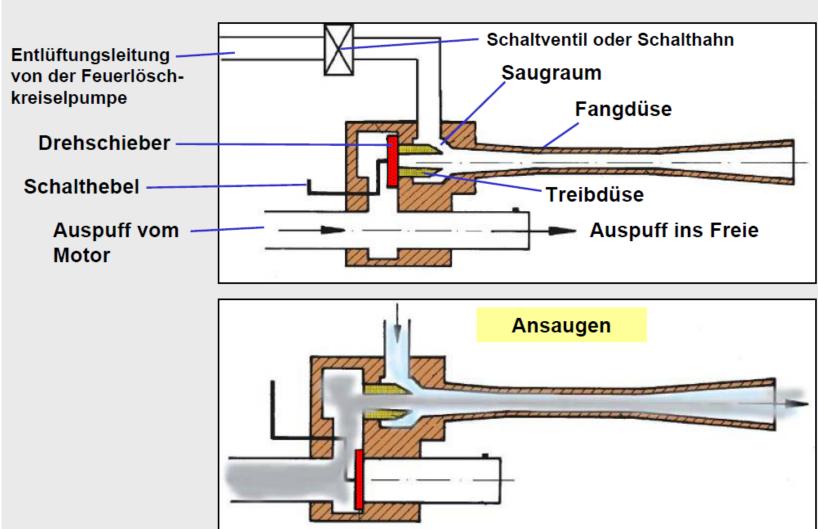

# 4. Feuerlöschkreiselpumpen: Entlüftungseinrichtungen

# Entlüftungseinrichtungen:

- Handkolben Entlüftungspumpe
- Flüssigkeitsring Entlüftungspumpen
- Auspuff Ejektor
- Kolben Entlüftungspumpen
- Membran Entlüftungspumpen

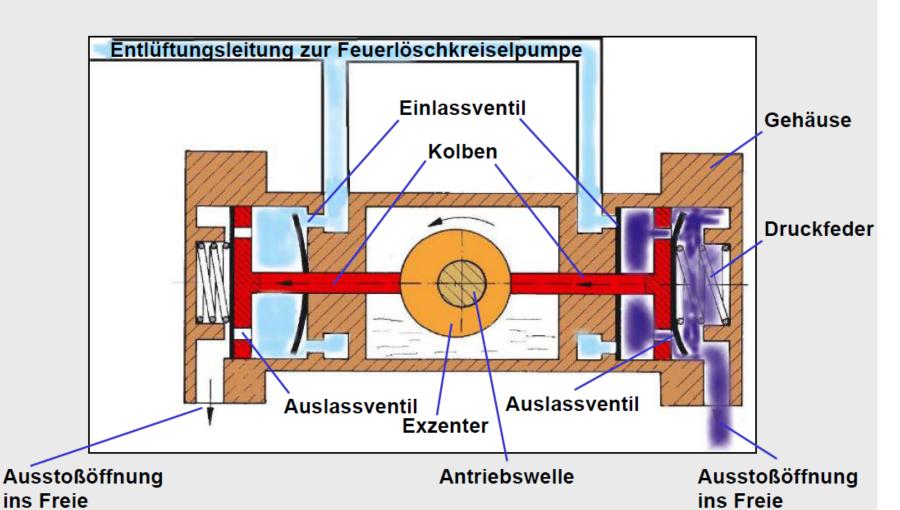
# 4. Feuerlöschkreiselpumpen: Handkolben-Entlüftungspumpe

#### Handkolben- Entlüftungspumpe




# 4. Feuerlöschkreiselpumpen: Flüssigkeitsring - Entlüftungspumpe

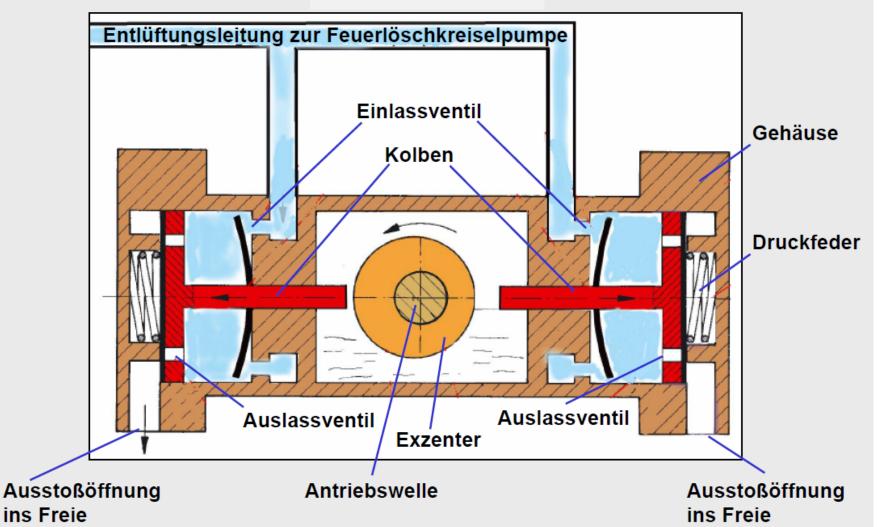
# Flüssigkeitsring – Entlüftungspumpe Schaltventil Auffüllöffnung mit Sieb Drehrichtung -Ausstoßöffnung **Entlüftungsleitung** ins Freie von der Feuerlöschkreiselpumpe Gehäuse Druckschlitz Saugschlitz -Flüssigkeitsring Sternförmiges **Schaufelrad** Entleerungshahn


#### 4. Feuerlöschkreiselpumpen: <u>Auspuff – Ejektor (Gasstrahler)</u>

#### Auspuff-Ejektor (Gasstrahler)

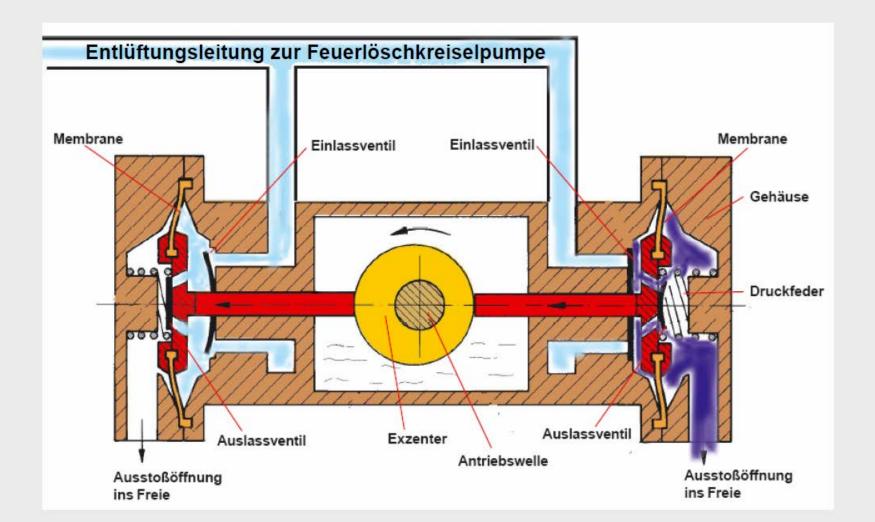


## 4. Feuerlöschkreiselpumpen: Kolben-Entlüftungspumpe


## Kolben-Entlüftungspumpe



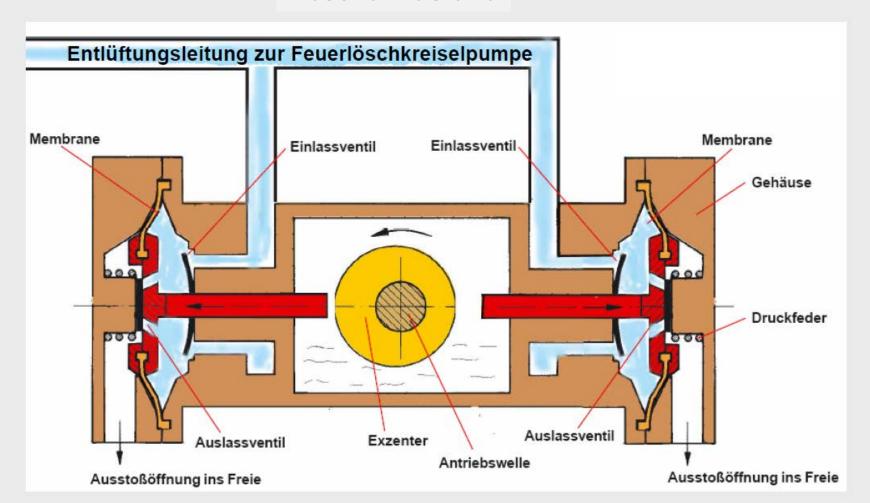
## 4. Feuerlöschkreiselpumpen: Kolben-Entlüftungspumpe


#### Kolben-Entlüftungspumpe

#### **Abschaltzustand**



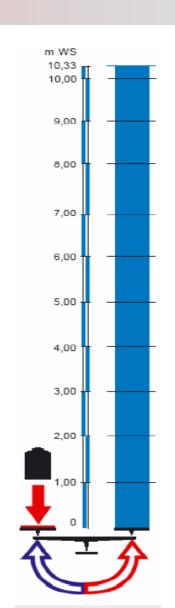
## 4. Feuerlöschkreiselpumpen: Membran-Entlüftungspumpe


#### Membran-Entlüftungspumpe

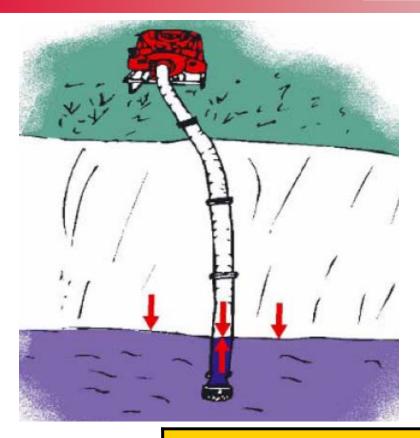


# 4. Feuerlöschkreiselpumpen: Membran-Entlüftungspumpe

#### Membran-Entlüftungspumpe


#### **Abschaltzustand**



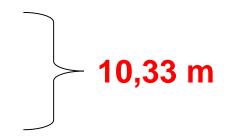

#### 4. Feuerlöschkreiselpumpen: Saugvorgang


In Meereshöhe lastet bei normalen Luftdruck auf jedem cm² der Erdoberfläche eine Luftsäule mit einem Gewicht von 1,033 kg = Gewicht einer Wassersäule (bei + 4°C) mit 1 cm² Grundfläche und 10,33 m Höhe.





## 4. Feuerlöschkreiselpumpen: Entlüften der Saugleitung






Durch das Entlüften verringert sich das Luftgewicht (Luftdruck) in der Saugleitung. Der auf der Wasseroberfläche wirkende höhere Luftdruck drückt das Wasser in die Saugleitung.

# 4. Feuerlöschkreiselpumpen: Theoretische Saughöhe

- Bei Jahresdurchschnitt des Luftdrucks von 1013 hPa
- Auf Meereshöhe
- Bei 4°C Wassertemperatur



# Ändert sich durch folgende Einflüsse:

- Wetterlage
- Höhenlage
- Wassertemperatur

#### **Faustformel:**

 Ortsbarometerstand in Hektopascal (hPa) geteilt durch 100 ist die theoretische Saughöhe in Meter



## 4. Feuerlöschkreiselpumpen: Praktische Saughöhe

#### Berechnungsbeispiel:

■ Standort: 600 m über NN

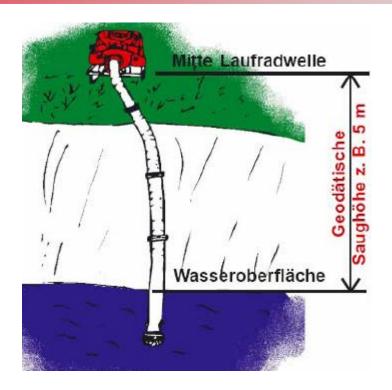
■ Ortsbarometerstand: 941 hPa

■ Wassertemperatur: 20°C

(zunehmende Wassertemperatur = Saughöhenabnahme, da sich die Wasserdampfbildung erhöht und einen Gegendruck bewirkt)

■ Theoretische Saughöhe 941: 100 = **9,41 m** 

bei 4°C Wassertemperatur


■ Abnahme bei 20°C- 0,24 m

Verbleibende theoretische Saughöhe = 9,17 m

■ Davon 15% Verlust (Reibungsverluste) - 1,38 m

Praktische Saughöhe = 7,79 m

#### 4. Feuerlöschkreiselpumpen: Geodätische/ Manometrische Saughöhe



#### Geodätische Saughöhe

Geodätische Saughöhe = Senkrechter Abstand zwischen Wasseroberfläche und Mitte Laufradwelle

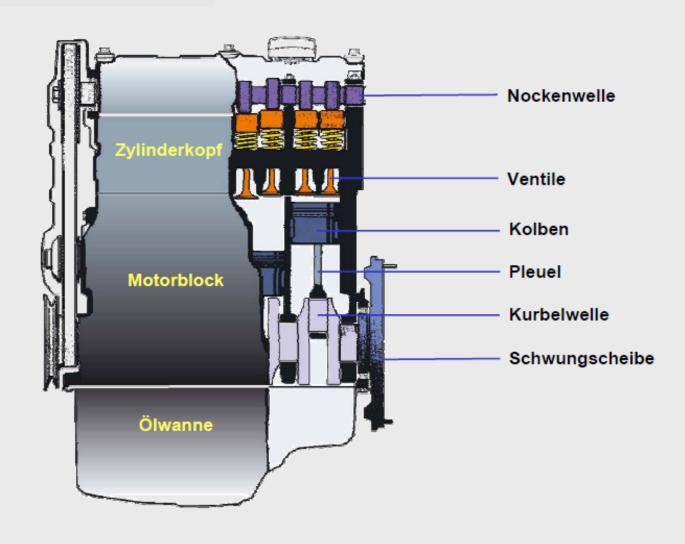
#### Manometrische Saughöhe

Manometrische Saughöhe = Geodätische Saughöhe + Summe aller Saughöhenverluste (wird am Eingangsdruckmanometer abgelesen)

#### 5. Motorenkunde

#### Motorenkunde

Für den Antrieb von Feuerwehrfahrzeugen, Tragkraftspritzen und kraftbetriebenen Geräten werden unterschiedliche Verbrennungsmotoren eingesetzt. Dabei werden zwei Motorenarten unterschieden:


#### 1.Ottomotor

- Viertaktmotor
- Zweitaktmotor

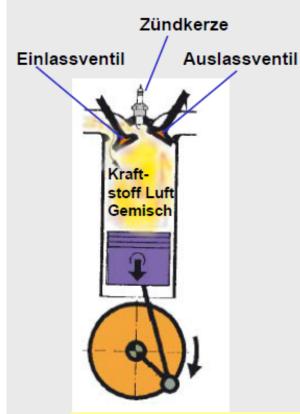
#### 2. Dieselmotor

Viertaktmotor

## 5. Motorenkunde: <u>Aufbau eines 4-Takt Motor</u>



## 5. Motorenkunde: Arbeitsweise 4-Takt Ottomotor


#### Arbeitsweise 4-Takt Ottomotor



2. Takt Verdichten

3. Takt Verbrennen

4. Takt Ausstoßen





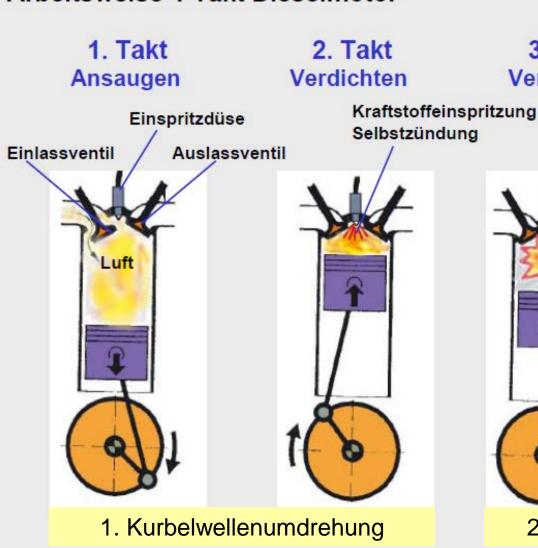
1. Kurbelwellenumdrehung





1. Kurbelwellenumdrehung

3. Takt


Verbrennen

4. Takt

Ausstoßen

#### 5. Motorenkunde: Arbeitsweise 4-Takt Dieselmotor

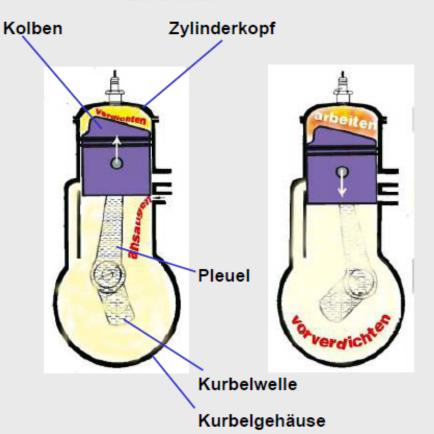
#### Arbeitsweise 4-Takt Dieselmotor



2. Kurbelwellenumdrehung

## 5. Motorenkunde: Arbeitsweise 2-Takt Ottomotor

#### Arbeitsweise 2-Takt Ottomotor


1. Takt
Verdichten und
Ansaugen

2. Takt
Arbeiten und
Vorverdichten

Gaswechsel
Ausstoßen und
Vorverdichten

Gaswechsel Überstömen und Spülen

Zündkerze







## 6. Wasserförderung: Allgemeines

#### **Allgemeines:**

#### Bei der Löschwasserentnahme wird unterschieden in:

#### 1. Wasserzuführung zur FP mit Druck

- Wasserentnahme zentrale Wasserversorgung (Hydrantenbetrieb)
- Innerhalb einer Förderstrecke (Geschlossene Schaltreihe)

#### 2. Wasserzuführung zur FP ohne Druck

- Wasserentnahme unabhängige Löschwasserversorgung
- Innerhalb einer Förderstrecke (Offene Schaltreihe)

# 6. Wasserförderung: Allgemeines

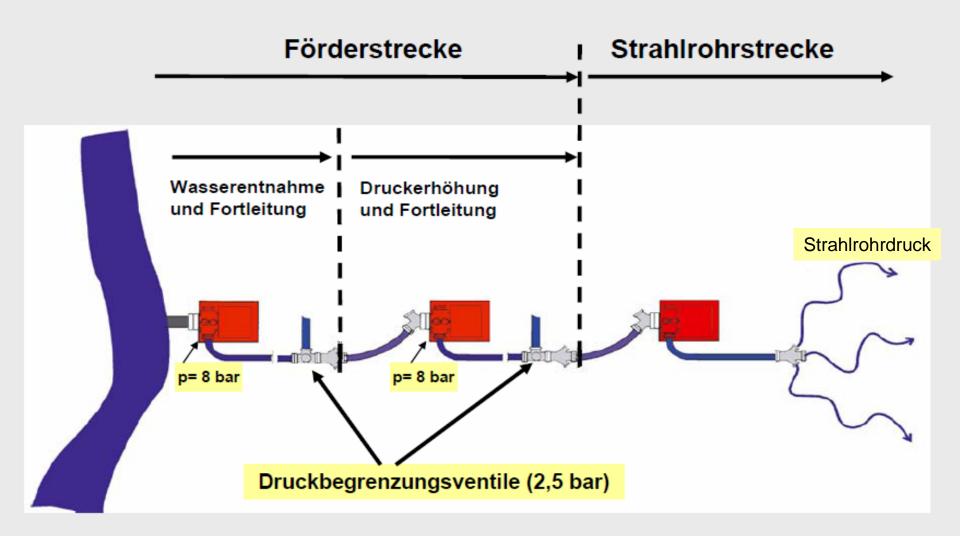


| p <sub>e</sub><br>H <sub>geo</sub><br>p <sub>R1</sub> | <ul><li>- Pumpeneingangsdruck</li><li>- geodätische Saughöhe</li><li>- Reibungsverluste Saugseite</li></ul> |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| p <sub>a</sub><br>p <sub>Str</sub><br>p <sub>R2</sub> | <ul><li>- Pumpenausgangsdruck</li><li>- Strahlrohrdruck</li><li>- Reibungsverluste Druckseite</li></ul>     |
| р                                                     | - Förderdruck (Pumpenleistung)                                                                              |

# 6. Wasserförderung: Allgemeines

# **Allgemeines:** $\mathbf{p}_{\mathsf{a}}$ **FPN** $p_e$ Saugbetrieb **Tankbetrieb** $p_e \pm 0$ p<sub>e</sub> p<sub>e</sub> + Sammelstück Saugleitung 1,5 bar bis 6 bar 0 bis -0,8 bar Begrenzter Löschwasserzuführung Löschwasservorrat (Tankfüllstutzen)

#### 6. Wasserförderung: Löschwasser in der Förderstrecke


# Löschwasserförderung in der Förderstrecke





## 6. Wasserförderung: Aufbau einer Förderstrecke

## <u>Aufbau einer Förderstrecke:</u>



## 6. Wasserförderung: Druckverluste und -gewinne

# Physikalische Zusammenhänge bei der Löschwasserversorgung

Der Druckverlust in der Förderstrecke ist abhängig von:

- Reibungsvolumen (Schlauchlänge, Förderstrom)
- > Höhenunterschied

#### Merke:

Pro 10 m Höhenunterschied ändert sich der Druck um 1 bar.

| Druckverluste in bar für je 100 m Schlauchlänge |
|-------------------------------------------------|
| (ermittelt nach Tabelle 2 in DIN 14811 Blatt 1) |
| abgerundet für den praktischen Verbrauch        |

| Wasser-<br>menge in<br>I/min                           | В   | C 52 | C 42 |  |  |  |  |  |
|--------------------------------------------------------|-----|------|------|--|--|--|--|--|
| 100                                                    |     | 0,2  | 0,6  |  |  |  |  |  |
| 200                                                    | 0,1 | 0,6  | 2,3  |  |  |  |  |  |
| 300                                                    | 0,2 | 1,2  | 5    |  |  |  |  |  |
| 400                                                    | 0,3 | 2    | 8,8  |  |  |  |  |  |
| 500                                                    | 0,5 | 3,3  | 13,8 |  |  |  |  |  |
| 600                                                    | 0,7 | 4,8  | 20   |  |  |  |  |  |
| 700                                                    | 0,9 | 6,5  |      |  |  |  |  |  |
| 800                                                    | 1,1 | 8,5  |      |  |  |  |  |  |
| 900                                                    | 1,4 | 10,9 |      |  |  |  |  |  |
| 1000                                                   | 1,7 | 13,5 |      |  |  |  |  |  |
| 1100                                                   | 2,1 | 16,5 |      |  |  |  |  |  |
| 1200                                                   | 2,5 | 20   |      |  |  |  |  |  |
| 1300                                                   | 3   |      |      |  |  |  |  |  |
| 1400                                                   | 3,5 |      |      |  |  |  |  |  |
| 1500                                                   | 4   |      |      |  |  |  |  |  |
| 1600                                                   | 4,5 |      |      |  |  |  |  |  |
| 1800                                                   | 5,7 |      |      |  |  |  |  |  |
| 2000                                                   | 7   |      |      |  |  |  |  |  |
| 2200                                                   | 8,4 |      |      |  |  |  |  |  |
| 2400                                                   | 10  |      |      |  |  |  |  |  |
| Bei 300m Schlauchlänge z.B. würde der Druckverlust das |     |      |      |  |  |  |  |  |

Bei 300m Schlauchlänge z.B. würde der Druckverlust da dreifache betragen

## 6. Wasserförderung

#### Wasserlieferungstabelle aus Strahlrohrmundstücken nach DIN 14 200

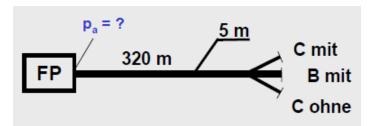
CM-Strahlrohr nach DIN 14 365: mit Mundstück = **9** mm Durchmesser; ohne Mundstück = **12** mm Durchmesser mit Mundstück = **16** mm Durchmesser ohne Mundstück = **22** mm Durchmesser

| Druck-  | ick- Mundstückdurchmesserid in mm         |    |     |     |     |     |     |            |     |      |      |      |      |      |      |      |      |      |      |      |      |
|---------|-------------------------------------------|----|-----|-----|-----|-----|-----|------------|-----|------|------|------|------|------|------|------|------|------|------|------|------|
| höhe in | 4                                         | 6  | 8   | 9   | 10  | 12  | 14  | 16         | 18  | 20   | 21   | 22   | 24   | 26   | 28   | 30   | 32   | 34   | 36   | 38   | 40   |
| bar     | <sup>ar</sup> Wasserdurchfluss Q in I/min |    |     |     |     |     |     |            |     |      |      |      |      |      |      |      |      |      |      |      |      |
| 1       | 10                                        | 24 | 42  | 53  | 65  | 94  | 130 | 165        | 210 | 260  | 289  | 315  | 375  | 440  | 510  | 590  | 670  | 755  | 840  | 945  | 1050 |
| 1,5     | 13                                        | 29 | 51  | 65  | 80  | 115 | 155 | 205        | 260 | 320  | 354  | 385  | 460  | 540  | 630  | 720  | 820  | 925  | 1040 | 1150 | 1280 |
| 2       | 15                                        | 33 | 59  | 74  | 92  | 135 | 180 | 235        | 300 | 370  | 409  | 445  | 530  | 625  | 725  | B30  | 945  | 1070 | 1200 | 1330 | 1480 |
| 2,5     | 17                                        | 37 | 66  | B3  | 105 | 150 | 200 | 265        | 335 | 415  | 457  | 500  | 595  | 700  | 810  | 930  | 1060 | 1190 | 1340 | 1490 | 1650 |
| 3       | 18                                        | 41 | 72  | 91  | 115 | 165 | 220 | 290        | 365 | 455  | 501  | 550  | 650  | 765  | 885  | 1020 | 116D | 1310 | 1470 | 1630 | 1810 |
| 3,5     | 20                                        | 44 | 78  | 98  | 120 | 175 | 240 | 315        | 395 | 490  | 541  | 000  | 705  | 825  | 960  | 1100 | 1250 | 1410 | 1580 | 1760 | 1960 |
| 4       | 21                                        | 47 | 84  | 105 | 130 | 190 | 255 | 335        | 425 | 525  | 580  | 630  | 755  | 885  | 1020 | 1180 | 1340 | 1510 | 1690 | 1890 | 2090 |
| 4,5     | 22                                        | 50 | 89  | 112 | 140 | 280 | 270 | 300        | 450 | 555  | 614  | 670  | 800  | 935  | 1090 | 1250 | 1420 | 1600 | 1800 | 2000 | 2220 |
| 5       | 23                                        | 53 | 93  | 118 | 145 | 210 | 285 | 375        | 475 | 585  | 647  | 705  | 840  | 985  | 1140 | 1310 | 1500 | 1690 | 1890 | 2110 | 2340 |
| 5,5     | 25                                        | 55 | 98  | 123 | 155 | 220 | 300 | 390        | 495 | 615  | 678  | 740  | 880  | 1040 | 1200 | 1380 | 1570 | 1770 | 1980 | 2210 | 2450 |
| 6       | 26                                        | 58 | 100 | 129 | 160 | 230 | 315 | 410        | 520 | 640  | 709  | 775  | 920  | 1080 | 1250 | 1440 | 164D | 1850 | 2070 | 2310 | 2560 |
| 6,5     | 27                                        | 60 | 105 | 134 | 165 | 240 | 325 | 425        | 540 | 665  | 738  | 805  | 960  | 1130 | 1310 | 1500 | 1700 | 1920 | 2160 | 2400 | 2660 |
| 7       | 28                                        | 62 | 110 | 139 | 175 | 250 | 340 | 440        | 560 | 690  | 765  | 835  | 995  | 1170 | 1350 | 1550 | 1770 | 2000 | 2240 | 2500 | 2760 |
| 7,5     | 29                                        | 64 | 115 | 144 | 180 | 260 | 350 | 460        | 580 | 715  | 793  | 865  | 1030 | 1210 | 1400 | 1610 | 183D | 2070 | 2320 | 2580 | 2860 |
| 8       | 30                                        | 66 | 120 | 149 | 185 | 265 | 360 | 475        | 600 | 740  | 818  | 895  | 1060 | 1250 | 1450 | 1660 | 1890 | 2140 | 2390 | 2670 | 2960 |
| 8,5     | 30                                        | 69 | 120 | 154 | 190 | 275 | 375 | 490        | 615 | 760  | 844  | 920  | 1100 | 1290 | 1490 | 1710 | 195D | 2200 | 2470 | 2750 | 3050 |
| 9       | 31                                        | 71 | 125 | 158 | 195 | 280 | 385 | 500        | 635 | 785  | 868  | 950  | 1130 | 1320 | 1540 | 1760 | 2010 | 2260 | 2540 | 2830 | 3150 |
| 9,5     | 32                                        | 72 | 130 | 162 | 200 | 290 | 395 | 515        | 650 | B05  | 892  | 975  | 1160 | 1360 | 1580 | 1B10 | 2060 | 2330 | 2610 | 2910 | 3200 |
| 10      | 33                                        | 74 | 135 | 167 | 205 | 295 | 405 | 530        | 670 | B25  | 915  | 1000 | 1190 | 1400 | 1620 | 1860 | 2110 | 2390 | 2680 | 2980 | 3300 |
| 11      | 35                                        | 78 | 140 | 175 | 215 | 310 | 425 | 555        | 700 | B65  | 960  | 1050 | 1250 | 1460 | 1700 | 1950 | 2220 | 2500 | 2810 | 3150 | 3450 |
| 12      | 36                                        | 81 | 145 | 1B3 | 225 | 325 | 445 | 580        | 735 | 905  | 1003 | 1090 | 1300 | 1530 | 1770 | 2040 | 2320 | 2620 | 2930 | 3250 | 3600 |
| 13      | 38                                        | 85 | 150 |     | 235 | 340 | 460 | 605        | 765 | 940  | 1043 | 1140 | 1360 | 1590 | 1850 | 2120 | 2410 | 2720 | 3050 | 3400 | 3750 |
| 14      | 39                                        | 88 | 155 |     | 245 | 350 | 480 | 625        | 790 | 960  | 1083 | 1180 | 1410 | 1650 | 1920 | 2200 | 2500 | 2820 | 3150 | 3550 | 3900 |
| 16      | 40                                        | 91 | 160 |     | 255 | 365 | 495 | 650<br>670 | 820 | 1010 | 1121 | 1220 | 1460 | 1710 | 1980 | 2280 | 2590 | 2920 | 3300 | 3650 | 4050 |
| 16      | 42                                        | 94 | 165 |     | 260 | 375 | 510 | 670        | 845 | 1040 | 1158 | 1260 | 1500 | 1770 | 2050 | 2350 | 2670 | 3000 | 3400 | 3750 | 4200 |

# 6. Wasserförderung: Berechnung der Brandstellenpumpe

$$p_a = p_R + p_{vert} + p_h$$

Niedersächsische Akademie


für Brand- und Katastrophenschutz

p<sub>R</sub> = Druckverlust durch Reibung

 $p_{vert}$  = Druck am Verteiler (5 bar)

p<sub>h</sub> = Druckverlust/-gewinn durch Höhenunterschied

# Aufgabe:



#### Gegeben:

Druck am Verteiler = 5 bar (für Mehrzweckstrahlrohre)

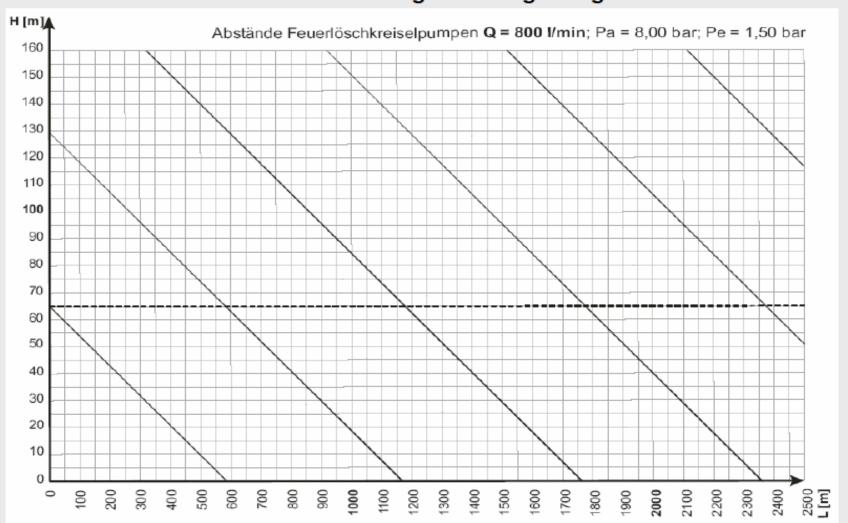
C mit Mundstück = 100 l/min

C ohne Mundstück = 200 l/min

B mit Mundstück = 300 l/min

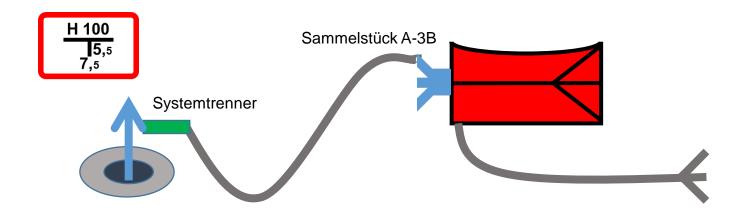
B ohne Mundstück = 600 l/min

#### Gesucht:


Förderstrom = ?

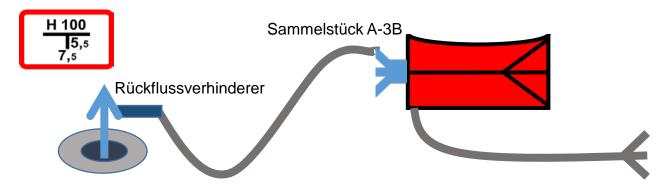
Ausgangsdruck = ?

Der Ausgangsdruck der Pumpe ist an die Strahlrohrbauart anzupassen!

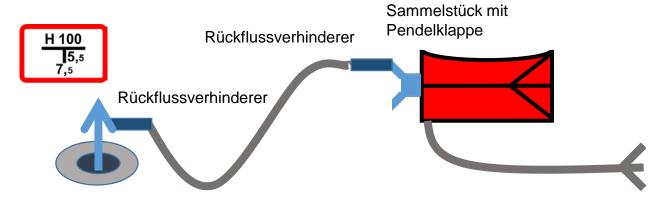

# 6. Wasserförderung: Wasserförderung über lange Wege

#### Wasserförderung über lange Wege



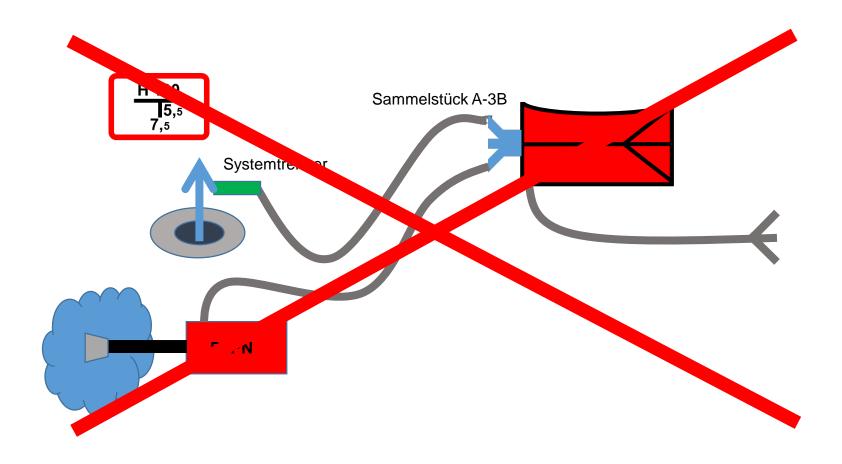

# 6. Wasserförderung: Trinkwasserschutz

## Wasserentnahme aus dem Trinkwassernetz mit einem Systemtrenner



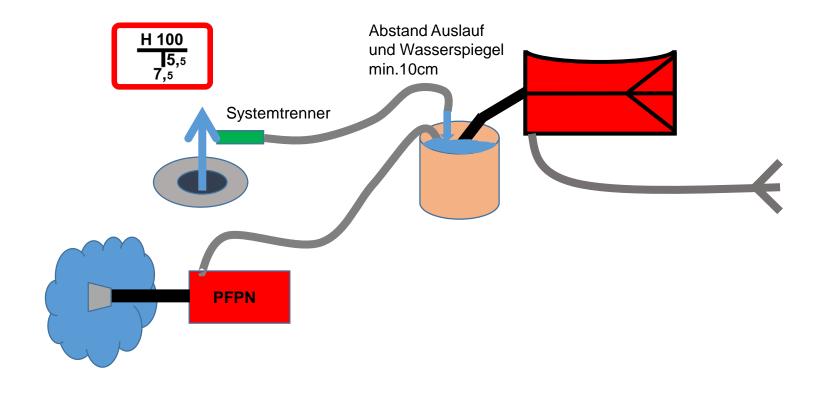

## 6. Wasserförderung: <u>Trinkwasserschutz</u>

Wasserentnahme aus dem Trinkwassernetz mit Rückflussverhinderer und Sammelstück A-3B (mögliche Übergangslösung)




Wasserentnahme aus dem Trinkwassernetz mit zwei Rückflussverhinderern und Sammelstück A-2B mit Pendelklappe (mögliche Übergangslösung)




# 6. Wasserförderung: Trinkwasserschutz

Wenn gleichzeitig Wasser aus dem Trinkwassernetz und einem offenen Gewässer entnommen wird, darf nur mit freiem Auslauf gearbeitete werden

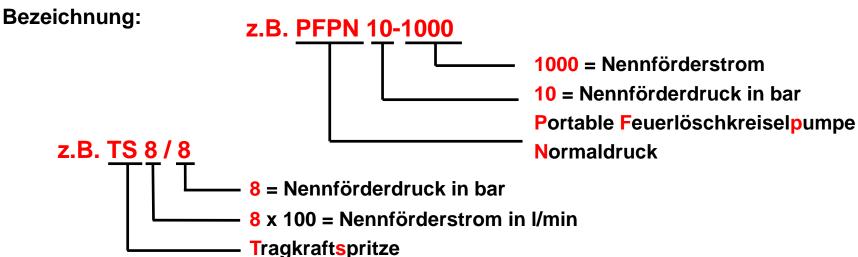


## 6. Wasserförderung: Trinkwasserschutz

Wenn gleichzeitig Wasser aus dem Trinkwassernetz und einem offenen Gewässer entnommen wird, darf nur mit freiem Auslauf gearbeitete werden



## 7. Kraftbetriebene und sonstige Geräte: Tragkraftspritzen (TS) nach DIN EN 14644


| Tragkraftspritze Typ | Mit Feuerlösch-<br>kreiselpumpe<br>nach | Höchstgewicht |
|----------------------|-----------------------------------------|---------------|
| TS 8/8               | DIN 14420                               | 190 kg        |
| PFPN 6-500           | DIN EN 1028                             | 96 kg         |
| PFPN 10-1000         | DIN EN 1028                             | 200 kg        |
| PFPN 10-1500         | DIN EN 1028                             | 200 kg        |

26.01.2018

Gelände

#### 7. Kraftbetriebene und sonstige Geräte

#### Tragbare Pumpen nach DIN 14410 und DIN EN 14644



**Kraftstoffvorrat:** PFPN 10-1000

**TS 8/8** 

(mind. eine Stunde)

(mind. zwei Stunden)

**Traggestell:** - mit Kufen

- Tragegriffe nur vorn und hinten

- TS ≤ 100 kg (z.B. PFPN 6-500) wird von min. 2 Personen

- bzw. TS ≤ 200 kg (z.B. PFPN 10-1000) wird von min. 4 Personen getragen (im Gelände und schweren Bedingungen mit 6 Personen)

### 7. Kraftbetriebene und sonstige Geräte: tragbare Pumpen



# **TS 8/8**

- Sauganschluss: A
- Druckanschluss: 2 B
- Hauptfarbe: Rot (RAL 3000)
- Gewicht: max. 190 kg



# PFPN 10-1000

- Sauganschluss: A
- Druckanschluss: 2 B
- Hauptfarbe: Rot (RAL 3000)
- Gewicht: max. 200 kg

#### 7. Kraftbetriebene und sonstige Geräte: Stromerzeuger

#### **Stromerzeuger**

Die Leistung der bei der Feuerwehr verwendeten Stromerzeuger wird als Scheinleistung in Kilovoltampere (kVA) angegeben.

#### Tragbare Stromerzeuger werden in der Regel mitgeführt auf:

- Löschgruppenfahrzeuge

Rüstwagen

- Gerätewagen

- Drehleitern

Einsatzleitwagen



| Leistung: | nach gültigen | Normen | ≤2 kVA |
|-----------|---------------|--------|--------|
|-----------|---------------|--------|--------|

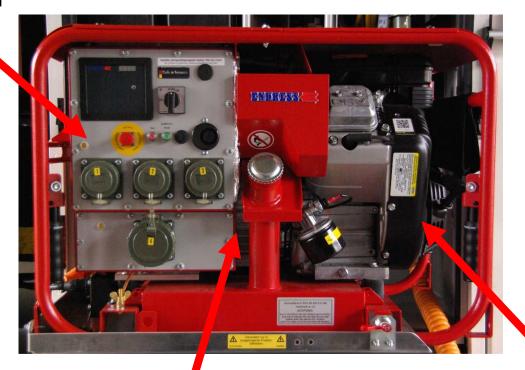
oder < 5 KVA

oder ≥ 5 kVA

<u>Kraftstoffbehälter:</u> Für eine Betriebsdauer von mind. 1,5 Std. ausgelegt

Festeingebaute Stromerzeuger werden in der Regel mitgeführt auf:

- Rüstwagen




Leistung: - bei RW : ≥ 22 kVA

#### 7. Kraftbetriebene und sonstige Geräte: Tragbare Stromerzeuger

#### wesentliche Bestandteile

#### **Bedienfeld**



Generator

Verbrennungsmotor

## 7. Kraftbetriebene und sonstige Geräte: Bedienfeld

## wesentliche Bestandteile

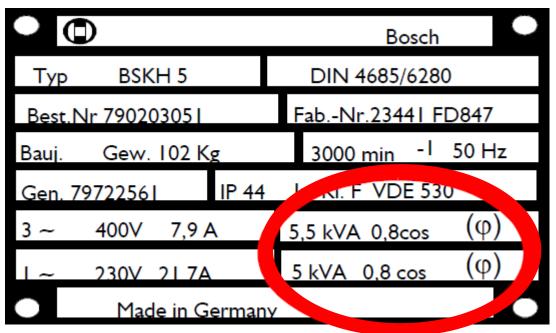


Betriebsstundenzähler

Isolationsüberwachung

**Steckdose Drehstrom** 

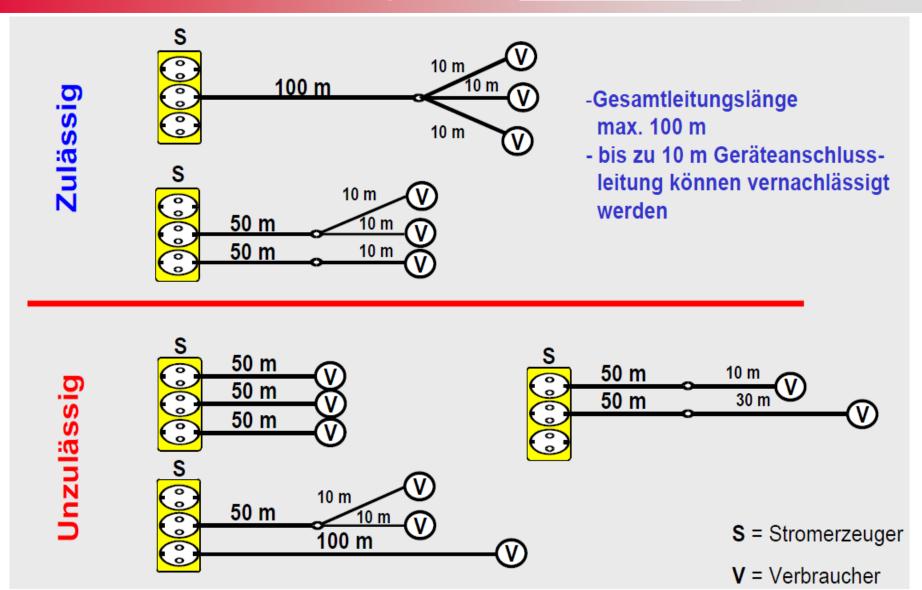
Last-/
Spannungsanzeige


Steckdosen Wechselstrom

Leistungsschutzschalter



#### 7. Kraftbetriebene und sonstige Geräte: Leistung der Stromerzeuger


# Leistung der Stromerzeuger



| Scheinleistung | X | Leistungsfaktor | = | Wirkleistung |
|----------------|---|-----------------|---|--------------|
| S              | X | cos (φ)         | = | Р            |
| 5 kVA          | X | 0,8             | = | 4 kW         |

D.h., der Stromerzeuger kann z.B. mit 4 Scheinwerfern (Wirkverbaucher) zu je 1000 W belastet werden.

#### 7. Kraftbetriebene und sonstige Geräte: Anschlusslängen



# 7. Kraftbetriebene und sonstige Geräte: <u>Trennschleifmaschinen</u>



mit Elektromotor



mit Verbrennungsmotor

#### Schutzausrüstung







### 7. Kraftbetriebene und sonstige Geräte: Tauchmotorpumpe

#### Tauchmotorpumpe (TP) nach DIN 14425

#### Pumpengrößen:

1 bar Nennförderdruck

400 I/min Nennförderstrom

Tauchmotorpumpe

Merkmale:

Korndurchlass: 8mm

Pumpenausgang: C

TP 8 / 1

1 bar Nennförderdruck

800 l/min Nennförderstrom

Tauchmotorpumpe

Merkmale:

Korndurchlass: 10mm

Pumpenausgang: B

TP 15 / 1

1 = Nennförderdruck in bar

1500 l/min Nennförderstrom

Tauchmotorpumpe

Merkmale:

Korndurchlass: 15mm

Pumpenausgang: A

26.01.2018

### 7. Kraftbetriebene und sonstige Geräte: <u>Turbinentauchpumpe</u>

#### **Turbinentauchpumpe (TTP) nach DIN 14426**

#### Pumpengrößen:





# 7. Kraftbetriebene und sonstige Geräte: hydr. Rettungsgerät

# **Hydraulisches Rettungsgerät**





# 7. Kraftbetriebene und sonstige Geräte: Lüftungsgeräte

Be- und Entlüftungsgeräte:



#### Techn. Daten:

- •10000 m<sup>3</sup>/h
- •380 V Drehstrommotor
- •explosionsgeschützt

#### 2. Drucklüfter



#### Techn. Daten:

- •Bis 43000 m<sup>3</sup>/h
- •400 V Elektromotor
- •Kein Abgas
- •Relativ leicht



#### Techn. Daten:

- •Bis 96000 m<sup>3</sup>/h
- •Benzinmotor
- Abgas
- •1-Mann-Bedienung

#### 3. Turbinen-Drucklüfter



#### Techn. Daten:

- •Bis 51000 m<sup>3</sup>/h
- •Wasserturbine
- •2. Pumpe erforderlich
- •unflexibel